110 research outputs found

    Mammalian Genes Preferentially Co-Retained in Radiation Hybrid Panels Tend to Avoid Coexpression

    Get PDF
    Coexpression has been frequently used to explore modules of functionally related genes in eukaryotic genomes. However, we found that genetically interacting mammalian genes identified through radiation hybrid (RH) genotypes tend not to be coexpressed across tissues. This pattern remained unchanged after controlling for potential confounding factors, including chromosomal linkage, chromosomal distance, and gene duplication. Because >99.9% of the genetically interacting genes were identified according to the higher co-retention frequencies, our observation implies that coexpression is not necessarily an indication of the need for the co-presence of two genes in the genome, which is a prerequisite for cofunctionality of their coding proteins in the cell. Therefore, coexpression information must be applied cautiously to the exploration of the functional relatedness of genes in a genome

    Assessing protein similarity with Gene Ontology and its use in subnuclear localization prediction

    Get PDF
    BACKGROUND: The accomplishment of the various genome sequencing projects resulted in accumulation of massive amount of gene sequence information. This calls for a large-scale computational method for predicting protein localization from sequence. The protein localization can provide valuable information about its molecular function, as well as the biological pathway in which it participates. The prediction of localization of a protein at subnuclear level is a challenging task. In our previous work we proposed an SVM-based system using protein sequence information for this prediction task. In this work, we assess protein similarity with Gene Ontology (GO) and then improve the performance of the system by adding a module of nearest neighbor classifier using a similarity measure derived from the GO annotation terms for protein sequences. RESULTS: The performance of the new system proposed here was compared with our previous system using a set of proteins resided within 6 localizations collected from the Nuclear Protein Database (NPD). The overall MCC (accuracy) is elevated from 0.284 (50.0%) to 0.519 (66.5%) for single-localization proteins in leave-one-out cross-validation; and from 0.420 (65.2%) to 0.541 (65.2%) for an independent set of multi-localization proteins. The new system is available at . CONCLUSION: The prediction of protein subnuclear localizations can be largely influenced by various definitions of similarity for a pair of proteins based on different similarity measures of GO terms. Using the sum of similarity scores over the matched GO term pairs for two proteins as the similarity definition produced the best predictive outcome. Substantial improvement in predicting protein subnuclear localizations has been achieved by combining Gene Ontology with sequence information

    Colloids as Mobile Substrates for the Implantation and Integration of Differentiated Neurons into the Mammalian Brain

    Get PDF
    Neuronal degeneration and the deterioration of neuronal communication lie at the origin of many neuronal disorders, and there have been major efforts to develop cell replacement therapies for treating such diseases. One challenge, however, is that differentiated cells are challenging to transplant due to their sensitivity both to being uprooted from their cell culture growth support and to shear forces inherent in the implantation process. Here, we describe an approach to address these problems. We demonstrate that rat hippocampal neurons can be grown on colloidal particles or beads, matured and even transfected in vitro, and subsequently transplanted while adhered to the beads into the young adult rat hippocampus. The transplanted cells have a 76% cell survival rate one week post-surgery. At this time, most transplanted neurons have left their beads and elaborated long processes, similar to the host neurons. Additionally, the transplanted cells distribute uniformly across the host hippocampus. Expression of a fluorescent protein and the light-gated glutamate receptor in the transplanted neurons enabled them to be driven to fire by remote optical control. At 1-2 weeks after transplantation, calcium imaging of host brain slice shows that optical excitation of the transplanted neurons elicits activity in nearby host neurons, indicating the formation of functional transplant-host synaptic connections. After 6 months, the transplanted cell survival and overall cell distribution remained unchanged, suggesting that cells are functionally integrated. This approach, which could be extended to other cell classes such as neural stem cells and other regions of the brain, offers promising prospects for neuronal circuit repair via transplantation of in vitro differentiated, genetically engineered neurons

    A new measure for functional similarity of gene products based on Gene Ontology

    Get PDF
    BACKGROUND: Gene Ontology (GO) is a standard vocabulary of functional terms and allows for coherent annotation of gene products. These annotations provide a basis for new methods that compare gene products regarding their molecular function and biological role. RESULTS: We present a new method for comparing sets of GO terms and for assessing the functional similarity of gene products. The method relies on two semantic similarity measures; sim(Rel )and funSim. One measure (sim(Rel)) is applied in the comparison of the biological processes found in different groups of organisms. The other measure (funSim) is used to find functionally related gene products within the same or between different genomes. Results indicate that the method, in addition to being in good agreement with established sequence similarity approaches, also provides a means for the identification of functionally related proteins independent of evolutionary relationships. The method is also applied to estimating functional similarity between all proteins in Saccharomyces cerevisiae and to visualizing the molecular function space of yeast in a map of the functional space. A similar approach is used to visualize the functional relationships between protein families. CONCLUSION: The approach enables the comparison of the underlying molecular biology of different taxonomic groups and provides a new comparative genomics tool identifying functionally related gene products independent of homology. The proposed map of the functional space provides a new global view on the functional relationships between gene products or protein families

    The Energy Landscapes of Repeat-Containing Proteins: Topology, Cooperativity, and the Folding Funnels of One-Dimensional Architectures

    Get PDF
    Repeat-proteins are made up of near repetitions of 20– to 40–amino acid stretches. These polypeptides usually fold up into non-globular, elongated architectures that are stabilized by the interactions within each repeat and those between adjacent repeats, but that lack contacts between residues distant in sequence. The inherent symmetries both in primary sequence and three-dimensional structure are reflected in a folding landscape that may be analyzed as a quasi–one-dimensional problem. We present a general description of repeat-protein energy landscapes based on a formal Ising-like treatment of the elementary interaction energetics in and between foldons, whose collective ensemble are treated as spin variables. The overall folding properties of a complete “domain” (the stability and cooperativity of the repeating array) can be derived from this microscopic description. The one-dimensional nature of the model implies there are simple relations for the experimental observables: folding free-energy (ΔGwater) and the cooperativity of denaturation (m-value), which do not ordinarily apply for globular proteins. We show how the parameters for the “coarse-grained” description in terms of foldon spin variables can be extracted from more detailed folding simulations on perfectly funneled landscapes. To illustrate the ideas, we present a case-study of a family of tetratricopeptide (TPR) repeat proteins and quantitatively relate the results to the experimentally observed folding transitions. Based on the dramatic effect that single point mutations exert on the experimentally observed folding behavior, we speculate that natural repeat proteins are “poised” at particular ratios of inter- and intra-element interaction energetics that allow them to readily undergo structural transitions in physiologically relevant conditions, which may be intrinsically related to their biological functions

    Of Bits and Bugs — On the Use of Bioinformatics and a Bacterial Crystal Structure to Solve a Eukaryotic Repeat-Protein Structure

    Get PDF
    Pur-α is a nucleic acid-binding protein involved in cell cycle control, transcription, and neuronal function. Initially no prediction of the three-dimensional structure of Pur-α was possible. However, recently we solved the X-ray structure of Pur-α from the fruitfly Drosophila melanogaster and showed that it contains a so-called PUR domain. Here we explain how we exploited bioinformatics tools in combination with X-ray structure determination of a bacterial homolog to obtain diffracting crystals and the high-resolution structure of Drosophila Pur-α. First, we used sensitive methods for remote-homology detection to find three repetitive regions in Pur-α. We realized that our lack of understanding how these repeats interact to form a globular domain was a major problem for crystallization and structure determination. With our information on the repeat motifs we then identified a distant bacterial homolog that contains only one repeat. We determined the bacterial crystal structure and found that two of the repeats interact to form a globular domain. Based on this bacterial structure, we calculated a computational model of the eukaryotic protein. The model allowed us to design a crystallizable fragment and to determine the structure of Drosophila Pur-α. Key for success was the fact that single repeats of the bacterial protein self-assembled into a globular domain, instructing us on the number and boundaries of repeats to be included for crystallization trials with the eukaryotic protein. This study demonstrates that the simpler structural domain arrangement of a distant prokaryotic protein can guide the design of eukaryotic crystallization constructs. Since many eukaryotic proteins contain multiple repeats or repeating domains, this approach might be instructive for structural studies of a range of proteins

    Domain architecture evolution of pattern-recognition receptors

    Get PDF
    In animals, the innate immune system is the first line of defense against invading microorganisms, and the pattern-recognition receptors (PRRs) are the key components of this system, detecting microbial invasion and initiating innate immune defenses. Two families of PRRs, the intracellular NOD-like receptors (NLRs) and the transmembrane Toll-like receptors (TLRs), are of particular interest because of their roles in a number of diseases. Understanding the evolutionary history of these families and their pattern of evolutionary changes may lead to new insights into the functioning of this critical system. We found that the evolution of both NLR and TLR families included massive species-specific expansions and domain shuffling in various lineages, which resulted in the same domain architectures evolving independently within different lineages in a process that fits the definition of parallel evolution. This observation illustrates both the dynamics of the innate immune system and the effects of “combinatorially constrained” evolution, where existence of the limited numbers of functionally relevant domains constrains the choices of domain architectures for new members in the family, resulting in the emergence of independently evolved proteins with identical domain architectures, often mistaken for orthologs

    A Program for At-Risk High School Students Informed by Evolutionary Science

    Get PDF
    Improving the academic performance of at-risk high school students has proven difficult, often calling for an extended day, extended school year, and other expensive measures. Here we report the results of a program for at-risk 9th and 10th graders in Binghamton, New York, called the Regents Academy that takes place during the normal school day and year. The design of the program is informed by the evolutionary dynamics of cooperation and learning, in general and for our species as a unique product of biocultural evolution. Not only did the Regents Academy students outperform their comparison group in a randomized control design, but they performed on a par with the average high school student in Binghamton on state-mandated exams. All students can benefit from the social environment provided for at-risk students at the Regents Academy, which is within the reach of most public school districts
    corecore